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“futuristic soldier with advanced armor weaponry and helmet” “rusty steel toy frog with spatially varying materials with the body diffuse but shinny eyes”

Figure 1: Examples of generated images specified via a text-prompt (listed below each example) and with fine-grained lighting
control. Each prompt is plausibly visualized under two different user-provided lighting environments.

ABSTRACT
This paper presents a novel method for exerting fine-grained light-
ing control during text-driven diffusion-based image generation.
While existing diffusion models already have the ability to generate
images under any lighting condition, without additional guidance
these models tend to correlate image content and lighting. More-
over, text prompts lack the necessary expressional power to de-
scribe detailed lighting setups. To provide the content creator with
fine-grained control over the lighting during image generation, we
augment the text-prompt with detailed lighting information in the
form of radiance hints, i.e., visualizations of the scene geometry
with a homogeneous canonical material under the target lighting.

∗Work partially done during internship at Microsoft Research Asia.
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However, the scene geometry needed to produce the radiance hints
is unknown. Our key observation is that we only need to guide
the diffusion process, hence exact radiance hints are not necessary;
we only need to point the diffusion model in the right direction.
Based on this observation, we introduce a three stage method for
controlling the lighting during image generation. In the first stage,
we leverage a standard pretrained diffusion model to generate a
provisional image under uncontrolled lighting. Next, in the sec-
ond stage, we resynthesize and refine the foreground object in the
generated image by passing the target lighting to a refined diffu-
sion model, named DiLightNet, using radiance hints computed on
a coarse shape of the foreground object inferred from the provi-
sional image. To retain the texture details, we multiply the radiance
hints with a neural encoding of the provisional synthesized im-
age before passing it to DiLightNet. Finally, in the third stage, we
resynthesize the background to be consistent with the lighting on
the foreground object. We demonstrate and validate our lighting
controlled diffusion model on a variety of text prompts and lighting
conditions.
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1 INTRODUCTION
Text-driven generative machine learning methods, such as diffusion
models [Nichol et al. 2022; Ramesh et al. 2022; Rombach et al. 2022;
Saharia et al. 2022], can generate fantastically detailed images from
a simple text prompt. However, diffusion models also have built
in biases. For example, Liu et al. [2023] demonstrate that diffusion
models tend to prefer certain viewpoints when generating images.
As shown in Figure 2, another previously unreported bias is the
lighting in the generated images. Moreover, the image content and
lighting are highly correlated. While diffusion models have the
capability to sample different lighting conditions, there currently
does not exist a method to precisely control the lighting and the
image content independently in the generated images.

In this paper we aim to exert fine-grained control on the effects of
lighting during diffusion-based image generation (Figure 1). While
text prompts have been used to provide relative control of non-rigid
deformations of objects [Cao et al. 2023; Kawar et al. 2023], the
identity and gender of subjects [Kim et al. 2022], and the material
properties [Sharma et al. 2023] of objects, it is more difficult to im-
pose precise control over the lighting via a text prompt; language
generally offers only qualitative (e.g., warm, cold, cozy, etc.) and
coarse positional (e.g., left, right, rim-lighting, etc.) descriptions of
lighting. Furthermore, current text embeddings also have difficulty
in encoding fine-grained information [Paiss et al. 2023]. However,
due to the entanglement of the lighting and text embeddings, sim-
ply conditioning the text-to-image model on the lighting (e.g., by
passing the light direction) will not allow for independent control
of lighting and image content. Moreover, using a lighting represen-
tation such as a light direction vector or an environment map limits
the types of lighting that can control the image generation.

In this paper we employ an alternative method of passing light-
ing conditions, namely radiance hints; a rendering of the target
scene with a canonical homogeneous material lit by the target
lighting. However, this typically requires precise knowledge of the
underlying geometry which is unknown in the case of text-driven
image generation. A key observation is that even though the dif-
fusion model’s sampling of the distribution of images is biased in
terms of lighting, the learned distribution does contain the effects of
different lighting conditions. Hence, in order to control the lighting
during image generation, we need to guide the diffusion sampling
process. Armed with this key observation, we revisit radiance hints
and note that for guiding the sampling process, we do not need
exact radiance hints, only a coarse approximation; we rely on the
generative powers of the diffusion model to fill in the details.

We present a novel three stage method for providing fine-grained
lighting control for diffusion-based image generation from text

Figure 2: Examples of lighting bias in diffusion-based image
generation. Left: a batch of 12 images (text prompt: “a photo
of a soccer ball” ). The majority of the images are lit by a flash
light; only two exhibit off-center lighting (3rd row, 1st col-
umn and 3rd column). Right: a batch of generated images of
a robot dominated by light coming from either the front-left
or front-right (text prompt: “a photo of a toy robot standing
on a wooden table” ; images are generated with a depth condi-
tioned model to ensure a consistent shape).

prompts. Since the background in an image is part of the lighting
condition imposed on the foreground object, we focus primarily
on controlling the lighting on the foreground object, allowing the
background to change accordingly. In a first stage, we generate
a provisional image of the given text prompt under uncontrolled
(biased) lighting using a standard pretrained diffusion model. In
the second stage, we compute a proxy shape from the provisional
image using an off-the-shelf depth estimation network [Bhat et al.
2023] and foreground mask generator [Qin et al. 2020], from which
we generate a set of radiance hints. Next, we resynthesize the image
that matches both the text-prompt and the radiance hints using
a refined diffusion model named DiLightNet (Diffusion Lighting
ControlNet). To retain the rich texture information, we transform
the generated provisional image using a learned encoder and multi-
ply it with the radiance hints before passing it to DiLightNet. In the
third stage, we inpaint a new background consistent with the target
lighting. As our model is derived from large scale pretrained diffu-
sion models, we can generate multiple replicates of the synthesized
image that samples ambiguous interpretations of the materials.

We demonstrate our lighting controlled diffusion model on a
variety of text-prompt-generated images and under different types
of lighting, ranging from point lights to environment lighting. In
addition, we perform an extensive ablation study to demonstrate
the efficacy of each of the components that comprise DiLightNet.

2 RELATEDWORK
Diffusion Models for Image Generation. Diffusion models have

been shown to excel at the task of generating high quality images
by sampling from a learned distribution (e.g., of photographs) [Kar-
ras et al. 2022; Song et al. 2021], especially when conditioned on
text-prompts [Nichol et al. 2022; Ramesh et al. 2022; Rombach et al.
2022; Saharia et al. 2022]. Follow up work has endeavored to enrich
text-driven diffusion models to exert higher level semantic control
over the image generation process [Avrahami et al. 2022; Brooks
et al. 2023; Ge et al. 2023; Hertz et al. 2022; Liu et al. 2020b; Mokady
et al. 2023; Tumanyan et al. 2023; Voynov et al. 2023b], including
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non-rigid semantic edits [Cao et al. 2023; Kawar et al. 2023], modify-
ing the identity and gender of subjects [Kim et al. 2022], capturing
the data distribution of underrepresented attributes [Cong et al.
2023], and material properties [Sharma et al. 2023]. However, with
the exception of Alchemist [Sharma et al. 2023], these methods only
offer mid and high level semantic control. Similar to Alchemist, our
method aims to empower the user to control low level shading
properties. Complementary to Alchemist which offers relative con-
trol over material properties such as translucency and gloss, our
method provides fine-grained control over the incident lighting in
the generated image.

Alternative guidance mechanisms have been introduced to pro-
vide spatial control during the synthesis process based on (sketch,
depth, or stroke) images [Meng et al. 2022; Voynov et al. 2023a; Ye
et al. 2023], identity [Ma et al. 2023; Ruiz et al. 2023b; Xiao et al.
2023], photo-collections [Ruiz et al. 2023a], and by directly manip-
ulating mid-level information [Ho and Salimans 2021; Mou et al.
2023; Zhang et al. 2023b]. However, none of these methods provide
control over the incident lighting. We follow a similar process and
inject radiance hints modulated by a neural encoded version of
the image into the diffusion model via a ControlNet [Zhang et al.
2023b].

2D diffusion models have also been leveraged to change view-
point or generate 3D models [Liu et al. 2023; Watson et al. 2022;
Xiang et al. 2023; Zhang et al. 2023a]. However, these methods
do not offer control over incident lighting, nor guarantee con-
sistent lighting between viewpoints. Paint3D [Zeng et al. 2023]
directly generates diffuse albedo textures in the UV domain of
a given mesh. Fantasia3D [Chen et al. 2023] and MatLaber [Xu
et al. 2023] generate a richer set of reflectance properties in the
form of shape and spatially-varying BRDFs by leveraging text-to-
image 2D diffusion models and score distillation. Diffusion-based
SVBRDF estimation [Sartor and Peers 2023; Vecchio et al. 2023]
and diffusion-based intrinsic decomposition [Kocsis et al. 2023]
also produce rich reflectance properties, albeit from a photograph
instead of a text-prompt. However, all these methods require a ren-
dering algorithm to visualize the appearance, including indirect
lighting and shadows. In contrast, our method directly controls
the lighting during the sampling process, leveraging the space of
plausible image appearance embedded by the diffusion model.

Single Image Relighting. While distinct, our method is related to
relighting from a single image, which is a highly underconstrained
problem. To provide additional constraints, existing single image
methods focus exclusively on either outdoor scenes [Griffiths et al.
2022; Liu et al. 2020a; Türe et al. 2021; Wu and Saito 2017; Yu et al.
2020], faces [Han et al. 2023; Nestmeyer et al. 2020; Pandey et al.
2021; Peers et al. 2007; Ranjan et al. 2023; Shu et al. 2017; Sun et al.
2019; Wang et al. 2008], or human bodies [Ji et al. 2022; Kanamori
and Endo 2018; Lagunas et al. 2021]. In contrast, our method aims
to offer fine-grained lighting control of general objects. Further-
more, existing methods expect a captured photograph of an existing
scene as input, whereas, importantly, our method operates on, pos-
sibly implausible, generated images. The vast majority of prior
single image relighting methods explicitly disentangle the image
in various components, that are subsequently recombined after
changing the lighting. In contrast, similar to Sun et al. [2019], we

forego explicit decomposition of the input scene in disentangled
components. However, unlike Sun et al., we do not use a specially
trained encoder-decoder model, but rely on a general generative dif-
fusion model to produce realistic relit images. Furthermore, the vast
majority of prior single image relighting methods represents inci-
dent lighting using a Spherical Harmonics encoding [Ramamoorthi
2002]. Notable exceptions are methods that represent the incident
lighting by a shading image. Griffiths et al. [2022] pass a cosine
weighted shadow map (along with normals and the main light
direction) to a relighting network for outdoor scenes. Similarly,
Kanamori et al. [2018] and Ji et al. [2022] pass shading and ambient
occlusion maps to a neural rendering network. To better model
specular reflections, Pandey et al. [2021] and Lagunas et al. [2021]
pass, in addition to a diffuse shading image, also one or more spec-
ular shading images for neural relighting of human faces and full
bodies respectively. We follow a similar strategy and pass the target
lighting as a diffuse and (four) specular radiance hints as conditions
to a diffusion model.

Relighting using Diffusion Models. Ding et al.[2023] alter light-
ing, pose, and facial expression by learning a CGI-to-real mapping
from surface normals, albedo, and a diffuse shaded 3D morphable
model fitted to a single photograph [Feng et al. 2021]. To preserve
the identity of the subject in the input photograph, the diffusion
model is refined on a small collection (∼ 20) of photographs of
the subject. Ponglertnapakorn et al.[2023] leverage off-the-shelf
estimators [Deng et al. 2019; Feng et al. 2021; Yu et al. 2018] for
the lighting, a 3D morphable model, the subject’s identity, cam-
era parameters, a foreground mask, and cast-shadows to train a
conditional diffusion network that takes a diffuse rendered model
under the novel lighting (blended on the estimated background),
in addition to the identity, camera parameters, and target shadows
to generate a relit image of the subject. While we follow a similar
overall strategy, our method differs on three critical points. First,
our method operates on general scenes which exhibit a broader
range of shape and material variations than faces. Second, we pro-
vide multiple radiance hints (diffuse and specular) to control the
lighting during the diffusion process. Finally, DiLightNet operates
purely on an image generated via a text-prompt and our method
does not require a real-world captured input photograph.

Lasagna [Bashkirova et al. 2023] also shares the goal of control-
ling the lighting in diffusion-based image generation. However,
instead of radiance hints, Lasagna uses language tokens to con-
trol the lighting and thus lacks the fine-grained lighting control of
DiLightNet. Furthermore, it only supports a predefined set of 12
directional lights while DiLightNet handles both point and envi-
ronmental lighting.

3 OVERVIEW
Our method takes as input a text prompt (describing the image con-
tent), the target lighting, a content-seed that controls variations in
shape and texture, and an appearance-seed that controls variations
in light-material interactions. The resulting output is a generated
image corresponding to the text prompt that is consistent with
the target lighting. We assume that the image contains an isolated
foreground object, and that the background content is implicitly
described by the target lighting. We make no assumption on the
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Figure 3: Overview of our pipeline for lighting-controlled prompt-driven image synthesis: (1)We start by generating a provisional
image using a pretrained diffusion model under uncontrolled lighting given a text prompt and a content-seed. (2) Next, we
pass an appearance-seed, the provisional image, and a set of radiance hints (computed from the target lighting and a coarse
estimate of the depth) to DiLightNet that will resynthesize the image such that becomes consistent with the target lighting
while retaining the content of the provisional image. (3) Finally, we inpaint the background to be consistent with foreground
object and the target lighting.

target lighting, and support arbitrary lighting conditions. Finally,
while we do not impose any constraint on the realism of the synthe-
sized content (e.g., fantastic beasts), we assume an image style that
depicts physically-based light-matter interactions (e.g., we do not
support artistic styles such as cell-shading or surrealistic images).

Our pipeline for lighting-controlled prompt-driven image syn-
thesis consists of three separate stages (Figure 3):

(1) Provisional Image Generation: In the first stage, we generate
a provisional image with uncontrolled lighting given the
text-prompt and the content-seed using a pretrained diffu-
sion model [Stability AI 2022b]. The goal of this stage is to
determine the shape and texture of the foreground object.
Optionally, we add “white background” to the text-prompt
to facilitate foreground detection.

(2) Synthesis with Radiance Hints: In the second stage (section 4),
we first generate radiance hints given the provisional image
and target lighting. Next, the radiance hints are multiplied
with a neural encoded version of the provisional image, and
passed to DiLightNet together with the text-prompt and
appearance-seed. The result of this second stage is the fore-
ground object with consistent lighting.

(3) Background Inpainting: In the third stage (section 5), we
inpaint the background consistent with the target lighting.

4 SYNTHESIS WITH RADIANCE HINTS
Our goal is to synthesize an image with the same foreground object
as in the provisional image, but with its appearance consistent
with the given target lighting. We will finetune the same diffusion
model used to generate the provisional image to take in account the
target lighting via a ControlNet [Zhang et al. 2023b]. A ControlNet
assumes a control signal per pixel, and thuswe cannot directly guide
the diffusion model using a direct representation of the lighting
such as an environment map or a spherical harmonics encoding.
Instead, we encode the effect of the target lighting on each pixel’s
outgoing radiance using radiance hints.

4.1 Radiance Hint Generation
A radiance hint is a visualization of the target shape under the
target illumination, where the material of the object is replaced

by a homogeneous proxy material (e.g., uniform diffuse). However,
we do not have access to the shape of the foreground object. To
circumvent this challenge, we observe that ControlNet typically
does not require very precise information and it has been shown to
work well on sparse signals such as sketches. Hence, we argue that
an approximate radiance hint computed from a coarse estimate of
the shape suffices.

To estimate the shape of the foreground object, we first seg-
ment the foreground object from the provisional image using an
off-the-shelf salient object detection network. Practically, we use
U2Net [Qin et al. 2020] as it offers a good trade-off between speed
and accuracy; we revert to SAM [Kirillov et al. 2023] for the rare
cases where U2Net fails to provide a clean foreground segmenta-
tion. Next, we apply another off-the-shelf depth estimation network
(ZoeDepth [Bhat et al. 2023]) on the segmented foreground object.
The estimated depth map is subsequently triangulated in a mesh
and rendered under the target lighting with the proxy materials.
However, single-image depth estimation is a challenging problem,
and the resulting triangulated depth maps are far from perfect. Em-
pirically we find that ControlNet is less sensitive to low-frequency
errors in the resulting shading, while high-frequency errors in the
shading can lead to artifacts. We therefore apply a Laplace smooth-
ing filter over the mesh to reduce the impact of high-frequency
discontinuities.

Inspired by the positional encoding in NeRFs [Mildenhall et al.
2020], we also encode the impact of different frequencies in the tar-
get lighting on the appearance of the foreground shape in separate
radiance hints. Leveraging the fact that a BRDF acts as a band-pass
filter on the incident lighting, we generate 4 radiance hints, each
rendered with a different material modeled with the Disney BRDF
model [Burley 2012] (one pure diffuse material and three specular
materials with roughness set to 0.34, 0.13, and 0.05 respectively).
We render the radiance hints, inclusive of shadows and indirect
lighting, with Blender’s Cycles path tracer.

4.2 Lighting Conditioned ControlNet
As noted before, we finetune a diffusion model to incorporate the
radiance hint images using ControlNet, as well as the original text
prompt used to generate the provisional image, and the appearance-
seed. However, as we finetune the model, there is no guarantee
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that it will generate a foreground object with the same shape and
texture as in the provisional image. Therefore, we want to include
the provisional image into the diffusion process. However, the tex-
ture and shape information in the provisional image is entangled
with the unknown lighting from the first stage. We disentangle
the relevant texture and shape information by first encoding the
provisional image (with the alpha channel set to the segmentation
mask). Our encoder follows Gao et al.’s [2020] deferred neural re-
lighting architecture, but with a reduced number of channels to
limit memory usage (see supplemental material). In addition, we
include a channel-wise multiplication between the 12-channel en-
coded feature map of the provisional image and the 4 × 3-channel
radiance hints which are subsequently passed to ControlNet.

4.3 Training
To train DiLightNet, we opt for a synthetic 3D training set that al-
lows us to precisely control the lighting, geometry, and the material
distributions. It is critical that the synthetic training set contains a
wide variety of shapes, materials, and lighting.

Shape and Material Diversity. We select synthetic objects from
the LVIS category in the Objaverse dataset [Deitke et al. 2022] that
also have either a roughnessmap, a normalmap, or both, yielding an
initial subset of 13𝐾 objects. In addition, we select 4𝐾 objects from
the Objaverse dataset (from the LVIS category) that only contain a
diffuse texture map and assign a homogeneous specular BRDF with
a roughness log-uniformly selected in [0.02, 0.5] and specular tint
set to 1.0. To ensure that the refined diffusionmodel has seen objects
with homogeneous materials, we select an additional 4𝐾 objects
(from the LVIS category) and randomly assign a homogeneous
diffuse albedo and specular roughness sampled as before.

Empirically, we found that the diversity of detailed spatially
varying materials in the Objaverse dataset is limited. Therefore,
we further augment the dataset with the shapes with the most
“likes” (a statistic provided by the Objaverse dataset) from each
LVIS category. For each of these selected shapes we automatically
generate UV coordinates using Blender (we eliminate the shapes
(17) for which this step failed), and create 4 synthetic objects per
shape by assigning a randomly selected spatially varying material
from the INRIA-Highres SVBRDF dataset [Deschaintre et al. 2020],
yielding a total of 4𝐾 additional objects with enhanced materials.

In total, our training set contains 25𝐾 synthetic objects with a
wide variety of shapes and materials. We scale and translate each
object such that its bounding sphere is centered at the origin with
a radius of 0.5m.

Lighting Diversity. We consider five different lighting categories:

(1) Point Light Source random uniformly sampled on the upper
hemisphere (with 0 ≤ 𝜃 ≤ 60◦) surrounding the object with
radius sampled in [4𝑚, 5𝑚], and with the power uniformly
chosen in [500𝑊, 1500𝑊 ]. To avoid completely black images
when the point light is positioned behind the object, we also
add a 1𝑊 uniform white environment light.

(2) Multiple Point Light Sources: three light sources sampled in
the same manner as the single light source case, including
the uniform environment lighting.

(3) Environment Lighting sampled from a collection of 679 envi-
ronment maps from Polyhaven.com.

(4) Monochrome Environment Lighting are the luminance only
versions of the environment lighting category. Including this
category combats potential inherent biases in the overall
color distribution in the environment lighting.

(5) Area Light Source simulates studio setups with large light
boxes. We achieve this by randomly placing an area light
source on the hemisphere surrounding the object (similar to
point light sources) aimed at the object, with a size randomly
chosen in the range [5𝑚, 10𝑚] and total power sampled in
[500𝑊, 1500𝑊 ]. Similar to the point lighting, we add a uni-
form white environment light of 1𝑊 .

Rendering. We render each of the 25𝐾 synthetic objects from
four viewpoints uniformly sampled on the hemisphere with radius
uniformly sampled from [0.8𝑚, 1.1𝑚] and 10◦ ≤ 𝜃 ≤ 90◦, aimed
at the object with a field of view sampled from [25◦, 30◦], and lit
with 12 different lighting conditions, selected with a relative ratio
of 3 : 1 : 3 : 2 : 3 for point source lighting, multiple point sources,
environment maps, monochrome environment maps, and area light
sources respectively. For each rendered viewpoint, we also require
corresponding radiance hints. However, at evaluation time, the ra-
diance hints will be constructed from estimated depth maps; using
the ground truth geometry and normals during training would
therefore introduce a domain gap. We observe that depth-derived
radiance hints include two types of approximations. First, due to
the smoothed normals, the resulting shading will also be smoothed
and shading effects due to intricate geometrical details are lost; i.e.,
it locally affects the radiance hints. Second, due to the ambiguities
in estimating depth from a single image, missing geometry and
global deformations cause incorrect shadows; i.e., a non-local effect.
We argue that diffusion models can plausibly correct the former,
whereas the latter is more ambiguous and difficult to correct. There-
fore, we would like the training radiance hints to only introduce
approximations on the local shading. This is achieved by using
the ground truth geometry with modified shading normals. We
consider two different approximations for the shading normals, and
randomly select at training time which one to use: (1) we use the
geometric normals and ignore any shading normals from the ob-
ject’s material model, or (2) we use the corresponding normals from
the smoothed triangulated depth (to reduce computational costs,
we estimate the depth for each synthetic object for each viewpoint
under uniform white lighting instead for each of the 9 sampled
lighting conditions).

Training Dataset. At training time we dynamically compose the
input-output pairs. We first select a synthetic object and view uni-
formly. Next, we select the lighting for the input and output image.
To select the lighting condition for the input training image, we note
that images generated with diffusion models tend to be carefully
white balanced. Therefore, we exclude the input images rendered
under (colored) environment lighting. For the output image, we
randomly select any of the 12 precomputed renders (including those
renderedwith colored environment lighting).We select the radiance
hints corresponding to the output with a 1:9 ratio for the radiance
hints with smoothed depth-estimated normals versus geometric
normals. To further improve robustness with respect to colored
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lighting, we apply an additional color augmentation to the output
images by randomly shuffling their RGB color channels; we use
the same color channel permutation for the output image and its
corresponding radiance hints.

5 BACKGROUND INPAINTING
Environment-based Inpainting. When the target lighting is speci-

fied by an environment map, we can directly render the background
image using the same camera configuration as for the radiance hints.
We composite the foreground on the background using the previ-
ously computed segmentation mask filtered with a 3 × 3 average
filter to smooth the mask edges.

Diffusion-based Inpainting. For all other lighting conditions, we
use a pretrained diffusion-based inpainting model [Rombach et al.
2022] (i.e., the stable-diffusion-2-inpaintingmodel [Stability AI 2022a]).
We input the synthesized foreground image along with the (inverse)
segmentation mask, as well as the original text prompt, to complete
the foreground image with a consistent background.

6 RESULTS
We implemented DiLightNet in PyTorch [Paszke et al. 2019] and
use stable diffusion v2.1 [Stability AI 2022b] as the base pretrained
diffusion model to refine. We jointly train the provisional image
encoder as well as the ControlNet using AdamW [Loshchilov and
Hutter 2018] with a 10−5 learning rate (all other hyper-parameter
are kept at the default values) for 150𝐾 iterations using a batch size
of 64. Training took approximately 30 hours using 8× NVidia V100
GPUs. The training data is rendered using Blender’s Cycles path
tracer [Blender Foundation 2011] at 512 × 512 resolution with 4096
samples per pixel.

Consistent Lighting Control. Figure 9 shows five generated scenes
(the provisional image is shown in the first column for reference) un-
der 5 different lighting conditions (point light (2nd and 3rd column),
and 3 different environment maps from [Debevec 1998]: Eucalyptus
Grove (4th column), Kitchen (5th column), and Grace Cathedral
(last column)) for five different prompts. Each prompt was chosen
to demonstrate our method’s ability to handle different material
and geometric properties such high specular materials (1st row),
rich geometrical details (2nd row), objects with multiple homoge-
neous materials (3rd row), non-realistic geometry (4th row), and
spatially-varying materials (last row). The provisional image in the
last two rows are generated with DALL-E3 instead of stable diffusion
v2.1 to better model the more complex prompt. We observe that
DiLightNet produces plausible results and that the appearance is
consistent under the same target lighting for different prompts.
Furthermore, the lighting changes are plausible over each prompt.
Please refer to the supplemental material for additional results.

Additional User Control. One advantage of our three step solu-
tion is that the user can alter the appearance-seed in the second
stage to modify the interpretation of the materials in the provi-
sional image. Figure 4 showcases how different appearance-seeds
affect the generated results. Altering the appearance-seed yields
alternative explanations of the appearance in the provisional image.

Conversely, using the same appearance-seed produces a consis-
tent appearance under different controlled lighting conditions (as
demonstrated in Figure 9).

In addition to the appearance-seed, we can further specialize the
text prompt between the first and second stage to provide additional
guidance on the material properties. Figure 5 shows four special-
izations of an initial prompt (“toy robot” ) by adding: “paper made”,
“plastic”, “specular shinny metallic”, and “mirror polished metallic”.
From these results we can see that all variants are consistent under
the same lighting, but with a more constrained material appearance
(i.e., diffuse without a highlight, a mixture of diffuse and specular,
and two metallic surfaces with a different roughness).

User Study. We perform two user studies to measure the percep-
tual lighting accuracy and the consistency of the resulting appear-
ance under varying lighting; i.e., how well changes induced by the
target lighting are disentangled from the appearance-seed.

In the first study, participants rate the lighting similarity of the
foreground objects in image pairs (four-level rating range where 0
means least similar and 3 means most similar) selected from three
groups of image pairings (10 pairs in each group):

(1) a synthetic object rendered under the target lighting is paired
with any of the generated images shown in this paper and
the supplemental material under identical lighting;

(2) a pair of synthetic objects rendered under identical target
lighting (this serves as the positive baseline); and

(3) a synthetic image paired with a generated image without
lighting control (the negative baseline). To avoid that the
background affects the judgment, we replace the background
with the target environment lighting.

The average total rating over 20 non-expert participants with im-
ages shown in randomized order for each of the three classes is:
19.61/19.85/12.25, showing that DiLightNet scores similar to the
positive reference.

In a second study, participants rate the appearance consistency
of the foreground objects in image pairs generated with rotated
environment lighting. We opt for rotating the lighting to retain the
overall color balance and frequency of lighting. The three groups
of pairings under rotated lighting are:

(1) image pairs generated with the same prompt and seeds;
(2) image pairs renderedwith the same synthetic object (positive

baseline); and
(3) pairs generated without lighting control with the same text

prompt but different content-seeds (negative baseline).
The average total rating was 25.75/25.05/11.35, confirming appear-
ance consistency on par with the positive baseline.

7 ABLATION STUDY
We perform a series of qualitative and quantitative ablation studies
to better understand the impact of the different components that
comprise our method. For quantitative evaluation, we create a
synthetic test set by selecting objects from the Objaverse dataset
that have the ’Staff Picked’ label and no LVIS label, ensuring that
there is no overlap between the training and test set. To ensure
high quality synthetic objects, we manually remove scenes that
are not limited to a single object and/or objects with low quality
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Figure 4: Impact of changing the appearance-seed. If not sufficiently constrained by the text prompt, the generated provisional
image (left) might not provide sufficient information for DiLightNet to determine the exact materials of the object. Altering the
appearance-seed directs DiLightNet to sample a different interpretation of light-matter interaction in the provisional image.
In this example, altering the appearance-seed induces changes in the interpretation of the glossiness and smoothness of the
leather gloves.

Provisional image "paper made" "plastic" "specular shinny metallic" "mirror polished metallic"

Figure 5: Impact of prompt specialization in DiLightNet. Instead of altering the appearance-seed, the user can also specialize
the prompt with additional material information in the 2nd stage. In this example the initial prompt (“toy robot” ) is augmented
with additional material descriptions while keeping the (point lighting) fixed.

Table 1: Quantitative comparison of different variants of pass-
ing radiance hints to theDiLightNet (rows 1-3), the number of
radiance hints (rows 4-6), impact of including the segmenta-
tionmask (row 7-8) and different training data augmentation
schemes (rows 9-12).

Variant PSNR SSIM LPIPS
Our Network 22.97 0.8249 0.1165
Direct ControlNet 22.82 0.8216 0.1212
Non-Encoded Multiplication 22.40 0.8174 0.1232
3 Radiance Hints 22.92 0.8197 0.1188
4 Radiance Hints 22.97 0.8249 0.1165
5 Radiance Hints 22.79 0.8200 0.1176
w/ Mask 22.97 0.8249 0.1165
w/o Mask 22.23 0.8148 0.1184
Full Augmentation 22.97 0.8249 0.1165
w/o Material Augmentation 22.90 0.8235 0.1178
w/o Smoothed Normal 21.88 0.7974 0.1314
w/o Color Augmentation 22.54 0.8161 0.1223

scanned textures with baked in lighting effects, yielding a test set
of 50 high quality synthetic objects. We render each test scene for
3 viewpoints and 6 lighting conditions. We quantify errors with
the PSNR, SSIM, and LPIPS [Zhang et al. 2018] metrics. Because

the appearance-seed is a user controlled parameter, we assume that
the user would select the appearance-seed that produces the most
plausible result. To simulate this process, we report the errors for
each scene/view/lighting combination that produces the lowest
LPIPS errors on renders generated with 4 different appearance-
seeds.

Provisional Image Encoding. DiLightNet multiplies the (encoded)
provisional image with the radiance hints. We found that both the
encoding, as well as the multiplication is critical for obtaining good
results. Figure 6 shows a comparison of DiLightNet versus two
alternate architectures:

(1) Direct ControlNet passes the provisional image directly as an
additional channel (in addition to the radiance hints) instead
of multiplying, yielding 16 channels input for ControlNet
(3-channels for the provisional image, plus (4 × 3)-channels
for the radiance hints, and 1 channel for the mask); and

(2) Non-encoded Multiplication of the provisional image (without
encoding) with the radiance hints.

Neither of the variants generates satisfactory results. This quali-
tative result is further quantitatively confirmed in Table 1 (rows
1-3).

Impact of Number of Radiance Hints. Table 1 (rows 4-6) compares
the impact of changing the number of (specular) radiance hints;
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all variants include a diffuse radiance hint. The 3 radiance hints
variant includes 2 specular radiance hints with roughness 0.13, and
0.34. The 4 radiance hints variant includes one additional specular
radiance hint with roughness 0.05. Finally, the 5 radiance hints
variant includes an additional (sharp specular) hint with roughness
0.02. From the quantitative results in Table 1 we can see that 4
radiance hints perform best. Upon closer inspection of the results,
we observe that there is little difference for scenes that exhibit a
simple shape with simple materials. However, for scenes with a
more complex shapewe find that the 3 radiance hints are insufficient
to accurately model the light-matter interactions. For scenes with
complexmaterials, we found that providing toomany radiance hints
can also be detrimental due to the limited quality of the (smoothed)
depth-estimated normals.

Foreground Masking. DiLightNet takes the foreground mask as
additional input. To better understand the impact of including the
mask, we also train a variant without taking the mask as an addi-
tional channel. Instead we fill the background with black pixels in
the provisional image. During training we also remove the back-
ground in the reference images. As a consequence, DiLightNet will
learn to generate a black background. For the ablation, we only
compute the errors over the foreground pixels. As shown in Ta-
ble 1 (rows 7-8), the variant trained without a mask produces larger
errors especially on cases with either complex shape or materials.

Training Augmentation. We eliminate each of the three augmen-
tations from the training set to better gauge their impact (Table 1,
rows 9-12):

• Without Normal Augmentation: This variant is trained using
radiance hints rendered with the ground truth shading nor-
mals, instead of the smoothed depth-estimated normals or
the geometric normals;

• Without Color Augmentation: This variant is trained on the
full training set without swapping the RGB color channels;
and

• Without Material Augmentation: This model is trained with
the basic 13𝐾 dataset without material augmentations.

From Table 1, we observe that all three augmentations improve
the robustness of DiLightNet. Of all augmentations, the normal
augmentation has the largest impact as it helps to bridge the domain
gap between perfect shading normals (in the training) and the
smoothed estimated depth normals. The color augmentation also
improves the quality for all test scenes, albeit to lesser degree.
The benefits of the material augmentation are most noticeable for
objects with smooth shapes (i.e., low geometrical complexity) as
errors in the normal estimation can help to mask inaccuracies in
representing complex materials.

8 DISCUSSION
Relation to Single Image Relighting. By skipping the first stage

and directly inputing a captured photograph as the provisional
image into DiLightNet, we can perform approximate single image
relighting (Figure 7). However, due to the lack of a text prompt, the
relighting results might not be ideal. Furthermore, unlike existing
single image relighting methods that are trained for a more narrow

class of scenes, DiLightNet is trained to handle any type of synthe-
sized image for which there might not exists a ’real’ reference under
novel lighting (e.g., the ’giraffe-turtle’ in Figure 9), DiLightNet only
aims to produce plausible images. Nevertheless, the relighting re-
sults generated by DiLightNet are plausible for scenes from which
a reasonably accurate depth and mask can be extracted. Further
refining DiLightNet to be more robust for relighting photographs
is a promising avenue for future research.

Limitations. Our method is not without limitations. Due to the
limitations of specifying the image content with text prompts, the
user only has limited control over the materials in the scene. Con-
sequently, the material-light interactions might not follow the in-
tention of the prompt-engineer. DiLightNet enables some indirect
control, beyond text prompts, through the appearance-seed. Inte-
gratingmaterial aware diffusionmodels, such as Alchemist [Sharma
et al. 2023], could potentially lead to better control over the material-
light interactions. Furthermore, our method relies on a number of
off-the-shelf solutions for estimating a rough depth map and seg-
mentation mask of the foreground object. While our method is
robust to some errors in the depth map, some types of errors (e.g.,
the bass-relief ambiguity) can result in non-satisfactory results.
An interesting alternative pipeline takes a reference depth map
as input (e.g., using a depth conditioned diffusion model such as
“stable-diffusion-2-depth” ), thereby bypassing the need to estimate
the depth and mask. As demonstrated in Figure 8, augmenting the
input with a reference depth map, further increases the quality of
the results. Finally, animating/altering the lighting using a fixed
content-seed can result in some minor structural shape changes
because the images are generated independently (see supplemental
video). Incorporating cross-frame consistency to improve temporal
stability is an interesting avenue for future research.

9 CONCLUSION
In this paper we introduced a novel method for controlling the
lighting in diffusion-based text-to-image generation. Our method
consists of three stages: (1) provisional image synthesis under un-
controlled lighting using existing text-to-image methods, (2) resyn-
thesis of the foreground object using our novel DiLightNet condi-
tioned by the radiance hints of the foreground object, and finally
(3) inpainting of the background consistent with the target lighting.
Key to our method is DiLightNet, a variant of ControlNet that takes
an encoded version of the provisional image (to retain the shape
and texture information) multiplied with the radiance hints. Our
method is able to generate images that match both the text prompt
and the target lighting. For future work we would like to apply
DiLightNet to estimate reflectance properties from a single photo-
graph and for text-to-3D generation with rich material properties.
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Prompt: “machine dragon robot in platinum”.

Prompt: “gorgeous ornate fountain made of marble”.

Prompt: “Storm trooper style motorcycle”.

Prompt: “A giraffe imitating a turtle, photorealistic”.

Prompt: “Rusty sculpture of a phoenix with its head more polished yet the wings are more rusty”.

Figure 9: Text-to-image generated results with lighting control. The first column shows the provisional image as a reference,
whereas the last five columns are generated under different user-specified lighting conditions (point lighting (columns 2-3) and
environment lighting (columns 4-6)). The provisional images for the last two examples are generated with DALL-E3 instead of
stable diffusion v2.1 to better handle the more complex prompt.
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